Written and peer-reviewed by physicians—but use at your own risk. Read our disclaimer.

banner image

amboss

Trusted medical answers—in seconds.

Get access to 1,000+ medical articles with instant search
and clinical tools.

Try free for 5 days

Bacteria overview

Last updated: March 15, 2021

Summarytoggle arrow icon

The nomenclature of bacteria is complex. Human pathogenic bacteria can be classified according to their characteristics: morphology (cocci, bacilli, coccobacilli, spiral, or presence of branching filaments), Gram-staining properties (Gram‑positive, Gram‑negative, and atypical), metabolic activity (aerobic, anaerobic, microaerophile, or facultative), or virulence factors (e.g., presence of capsule, pili, proteins, formation of coagulase, catalase or enterotoxins) among other traits. This article provides an overview of the most important human pathogenic bacteria. For an overview of the basics of bacteriology – including diagnosis and genetics – see “General bacteriology.”

The following table provides an overview of the nomenclature of important human pathogenic bacteria, according to their form and gram-staining properties. (See “Gram staining.”)

Pathogens with typical gram staining properties

Pathogens with atypical gram staining properties

Staphylococcus [1]

Overview of staphylococci
Pathogen Reservoir Bacterial culture Virulence factors and resistances

Diseases

Antibiotic of choice
Coagulase positive staphylococcus (CoPS)
Staphylococcus aureus
Coagulase negative staphylococci (CoNS)
Staphylococcus epidermidis
  • Natural skin flora
Staphylococcus saprophyticus
  • Natural flora of the female genital tract and perineum
  • Grape‑like cluster arrangement
  • Novobiocin-resistant

NO StRESs: NOvobiocin sensitivity patterns, Saprophyticus (Resistant), Epidermidis (Sensitive)

Streptococcus [1]

Overview of streptococci
Pathogen Reservoir Bacterial culture Virulence factors and resistances Diseases Antibiotic of choice
Alpha-hemolysis (partial hemolysis)

Streptococcus pneumoniae (pneumococcus)

  • Nasopharynx

Viridans streptococci (e.g., S. mutans, S. mitis, and S. sanguinis)

  • Oropharynx
Beta-hemolysis (complete hemolysis)
Streptococcus pyogenes (Group A Streptococcus) [4][5]
  • Nasopharynx
  • Humans are the sole host
Streptococcus agalactiae (Group B Streptococcus)
  • Gastrointestinal and genital tract
  • Capsule

Streptococcus gallolyticus [8]

Streptococcus anginosus [2][10]
  • Oropharynx, gastrointestinal, and genitourinary tract

B is for Babies: group B streptococci primarily affect neonates.

PaSsVORd: Pnemunoniae is Sensitive and Viridans is Optochin-Resistant.

BBRAS: Bacitracin sensitivity pattern of group B streptococci (Resistant) and for group A streptococci (Sensitive).

Sanguinis vessels lead to your heart: S. sanguinis can cause endocarditis.

Other gram positive cocci [1]

Overview of other gram positive cocci
Pathogen Reservoir Bacterial culture Diseases Antibiotic of choice
Peptostreptococcus (e.g., P. anaerobius, P. magnus)
  • Mucocutaneous surfaces
Enterococcus (e.g., E. faecium and E. faecalis) [11]

Bovis in the blood, cancer in the gut: S. bovis is associated with colon cancer.

Entero (intestine), faecalis (feces), strepto (twisted), and coccus (berry): the etymology of enterocci describes its characteristics.

Clostridia [1]

Pathogen

Reservoir

Bacterial culture

Virulence factors and resistances Diseases

Antibiotic of choice

Clostridioides difficile

Clostridium perfringens [12]

Clostridium tetani [14]

  • Soil worldwide

Clostridium botulinum

  • Soil
  • Intestinal tracts of birds and fish
  • Agricultural products (e.g., vegetables)
  • Only in case of secondary bacterial infection

Listeria, Corynebacteria, and Bacillus [1]

Overview of Listeria, Corynebacteria, and Bacilli

Pathogen

Reservoir

Bacterial culture

Virulence factors and resistances Diseases

Antibiotic of choice

Listeria monocytogenes

  • Unpasteurized milk products
  • Cold deli meats
  • Transplacental transmission/vaginal transmission during birth

Corynebacterium diphtheriae

  • Respiratory tract
  • Humans are the only hosts
  • Club-shaped rods in angular arrangements
  • Facultative anaerobe
  • Stainable using Neisser stain: detection of characteristic metachromatic granules (red and blue)
  • Positive Elek test for toxin
  • Black colonies on cystine-tellurite agar
  • Löffler medium: metachromatic granules

Bacillus anthracis

  • Soil
  • Mammals
  • Aerobe
  • Bamboo stick-shaped
  • Colonies show a halo of projections (Medusa head)

Bacillus cereus

  • Contaminated food (particularly rice that is kept warm and/or reheated)
  • Not indicated, only supportive care

Neisseria and Moraxella [1][15]

Overview of Neisseriae and Moraxella
Pathogen Reservoir Bacterial culture Virulence factors and resistances Diseases Antibiotic of choice

Neisseria meningitidis (meningococcus)

  • Nasopharynx
  • Humans are the only hosts (most commonly affects individuals living in close vicinity to one another, e.g., college students or soldiers).
  • Diplococcus
  • Facultative intracellular
  • Aerobe
  • Bacterial growth on culture medium is usually challenging
  • Selective medium: Thayer-Martin agar
  • Maltose and glucose fermenter
Neisseria gonorrhoeae (gonococcus)
  • Genital tract
  • Humans are the only hosts
Moraxella catarrhalis [16]
  • Nasopharynx
  • Humans are the only hosts

MeninGococci: Maltose + Glucose production and Gonococci: Glucose production.

Overview of gram negative coccobacilli [1]
Pathogen Reservoir

Bacterial culture

Virulence factors and resistances Diseases Antibiotic of choice

Haemophilus influenzae

  • Nasopharynx (particularly in young children)
  • Aerosol transmission

Haemophilus ducreyi

  • Humans are the only hosts

Brucella melitensis

  • Goats and sheep serve as hosts

Brucella abortus

  • Unpasteurized dairy
  • Cattle are the only hosts

Bordetella pertussis

  • Humans are the only hosts (particularly adults and adolescents)

Pasteurella multocida

  • Oropharynx of animals (especially dogs and cats)
  • Cellulitis (secondary to dog and cat bites)
  • Respiratory tract infections
Acinetobacter baumanni [23]
  • Human skin, oropharynx, and respiratory tract
  • Outer membrane protein A (OmpA): biofilm formation and immunomodulation [24]

Influenza virus causes the flu whereas H. influenzae causes epiglottitis and meningitis.
Bordetella pertussis grows on Bordet-Gengou agar.

Enterobacteriaceae [1]

Escherichia coli [25]

Overview of E. coli
Pathogen Reservoir Characteristics Important virulence factors Diseases Antibiotic of choice

EPEC (enteropathogenic E. coli)

  • Natural gut flora
  • Usually in children
  • Adherence to intestinal epithelium destruction of microvilli (inhibits absorption)
  • No toxin is produced
ETEC (enterotoxin E. coli)
  • Fecal contaminated food and water
EIEC (enteroinvasive E. coli)
  • Natural gut flora
EAEC (enteroaggregative E. coli)
  • Fecal contaminated food and water
  • Aggregation ("stacked-brick" pattern) with one another and adherence to intestinal mucosa inflammation watery (possibly bloody) diarrhea [26]
EHEC (enterohemorrhagic E. coli)
  • Undercooked meat, raw leafy vegetables
UPEC (uropathogenic E. coli)
  • Natural gut flora
  • Most common cause of UTIs [28]
NMEC (neonatal meningitis-causing E. coli) [29]
  • Common cause of neonatal bacterial meningitis in industrialized countries

Light as Air: (heat-Labile toxin upregulates ↑ cAMP and Adenylate cyclase), Stable as Granit: (heat-Stable toxin: upregulates ↑ cGMP and Guanylate cyclase).

Other Enterobacteriaceae

Overview of other Enterobacteriaceae
Pathogen Reservoir Characteristics Virulence factors and resistances Diseases Antibiotic of choice

Yersinia pestis [30]

  • Facultative intracellular
  • Bipolar staining (“closed safety pin” appearance)

Yersinia enterocolitica, Yersinia pseudotuberculosis [31]

Shigella: S. dysenteriae, S. flexneri, S. boydii, S. sonnei (in order of decreasing severity) [33]

  • Spread from cell to cell → invasion of M cells (MALT)
  • Resistant to gastric acid low infectious dose required [34]
  • Fastidious: stool samples require prompt testing
  • Slow/absent lactose fermentation
  • Immune response primarily via PMN infiltration

Salmonella enterica serotype Enteritidis, and Salmonella enterica serotype Typhimurium

  • Humans, animals, animal products (e.g., reptiles, poultry, pets, eggs) serve as hosts
  • Obligate pathogen
  • High infectious dose required → not resistant against gastric acid
  • Hematogenous dissemination is possible
  • Immune response primarily via PMN infiltration
  • Produces H2S
  • No lactose fermentation
  • Facultative intracellular

Salmonella enterica serotype Typhi, and Salmonella enterica serotype Paratyphi

Klebsiella pneumoniae

Klebsiella granulomatis [37]

  • Genital tract (endemic in tropical and subtropical developing countries)

Proteus (Proteus vulgaris; Proteus mirabilis)

  • Swarming motility on agar
  • Produces H2S

Mac and Cheese: MacConkey agar is used for lactose fermentors (Cheese).
PADDOCK: Aspiration Pneumonia, lung/liver Abscess, Diabetics, Drug resistance, alcOhOlics, Currant jelly, Klebsiella are most common features of Klebsiella infection.

Other gram negative bacilli [1]

Overview of other gram negative bacilli
Pathogen Reservoir Characteristics Virulence factors and resistances Diseases Antibiotic of choice

Helicobacter pylori [38]

  • Humans are the predominant hosts
  • Urease: ammonia formation increases the pH and enables survival in the acidic environment of the gut.

Legionella pneumophila

  • Natural aquatic habitats
  • Transmitted by water aerosols (e.g., air conditioning systems)

Campylobacter jejuni

  • Poultry, unpasteurized milk (natural gut flora in birds)
  • Contact with infected persons or infected animals (e.g., pigs, dogs, cats)

Pseudomonas aeruginosa [41][42]

  • Water and humid conditions (e.g., hot tubs, contaminated contact lens solution)
Burkholderia cepacia
  • Aquatic environments
  • Aerobic

Vibrio cholerae [45]

  • Contaminated water
  • Uncooked seafood (e.g., raw shellfish)
Vibrio vulnificus [46]
  • Contaminated water
  • Raw or undercooked seafood (e.g., raw shellfish, fish intestines)
  • Wounds infected by contaminated water or seafood
Vibrio parahaemolyticus [47]
  • Contaminated water
  • Raw or undercooked seafood (e.g., mussels)

Fusobacteriaceae [48]

  • Anaerobic produce CO2 and H2 in tissue
  • Bile-resistant
  • Foul smelling

Bacteroides (e.g., Bacteroides fragilis)

  • Up to 40% of fecal flora [49]

Bartonella henselae [50]

  • Cats are asymptomatic carriers

Bartonella quintana [51]

Eikenella corrodens [53][54]

Pseudomonas produces PEEPP: Phospholipase C, Exotoxin A, Endotoxin, Pyoverdin, and Pyocyanin are P. aeruginosa virulence factors.

CAMPFIRE: Carbapenems, Aminoglycosides, Monobactams, Polymyxins, Fluoroquinolones, thIRd and fourth-generation cephalosporins, Extended-spectrum penicillins are the drugs used to treat P. aeruginosa infections.

Overview of Actinomyces and Nocardiae [1]
Pathogen Reservoir Characteristics Virulence factors and resistances Diseases Antibiotic of choice

Actinomyces israelii [56]

Nocardia asteroides and Nocardia brasiliensis [57]

  • Soil worldwide

They are NOw ACTually gone with the SNAP of a finger: To treat NOcardia and ACTinomyces useSulfonamides, Nocardia, Actinomyces, and Penicillin.

Mycobacterium, Mycoplasmataceae (Mycoplasma), and Gardnerella [1]

Overview of Mycobacteria, Mycoplasma, and Gardnerella
Pathogen Reservoir Characteristics Virulence factors and resistances Diseases Antibiotic of choice

Mycobacterium tuberculosis

  • Humans

Mycobacterium leprae [59]

  • Humans and armadillos

Nontuberculous mycobacteria M. kansasii, M. ulcerans

M. avium-intracellulare
  • Ubiquitous
M. marinum
M. scrofulaceum

Mycoplasma pneumoniae

  • Humans are the only host

Ureaplasma urealyticum

  • Normal urogenital flora
  • Urocystitis
Gardnerella vaginalis [62][63][64][65]
  • Normal vaginal flora

Spirochetes

Overview of Spirochetes
Pathogen Reservoir Characteristics Diseases Antibiotic of choice

Treponema pallidum

  • Humans

Treponema vincentii

Borrelia burgdorferi

Borrelia recurrentis
  • Louse

Leptospira interrogans, Leptospira kirschneri

  • Animal urine in water (e.g., rats, cattle, sheep, and goats)
  • Very thin wall
  • Hook-shaped ends

SPecial for SPirochetes and SPecial BLT sandwich: Spirochetes are Borrelia, Leptospira, and Treponema .

Borrelia is the Biggest of all the Spirochetes.

Overview of obligate intracellular bacteria
Pathogen Reservoir Characteristics Virulence factors and resistances Diseases Antibiotic of choice

Chlamydia trachomatis

  • Humans are the only host

Chlamydophila psittaci

  • Parrots and other birds
  • Aerosol transmission

Chlamydophila pneumoniae

  • Humans are the only host
  • Aerosol transmission

Rickettsia rickettsii

Rickettsia prowazekii

  • Human to human (body louse)

Rickettsia typhi

Coxiella burnetii

  • Cattle, sheep, and goats
  • Aerosol transmission

Ehrlichia chaffeensis, Ehrlichia ewingii [67][68]

Anaplasma phagocytophilum [68][69][70][71]

When it's Rainy and Chilly outside, Cozy up and Eat Apple pie: Rickettsia, Chlamydia, Coxiella, Ehrlichia, Anaplasma are obligate intracellular bacteria.

Diagnostic associations of bacteria
Bacteria Diagnostic hint Clinical scenario
Actinomyces israelii
  • Patient with odontogenic infection develops an oral/facial abscess.
Borrelia burgdorferi
Clostridium perfringens
Clostridium tetani
  • Drumstick shaped
  • Patient punctures their sole with a dirty nail and develops trismus.
Klebsiella pneumoniae
  • Mucoid colonies
Pasteurella multocida
  • A patient that owns 3 cats present with signs of cellulitis.
Legionella pneumophila
  • Patient presents with productive cough, nausea, and confusion after a cruise trip.
Haemophilus influenzae
  • An unvaccinated child presents with high fever, drooling, and muffled voice.
  • Patient with a history of severe abdominal trauma develops fulminant sepsis.
Encapsulated bacteria
  1. Rosenthal KS, Tan MJ. Rapid Review Microbiology and Immunology, 3rd Edition. Elsevier ; 2010
  2. Actinomycosis. http://www.merckmanuals.com/professional/infectious-diseases/anaerobic-bacteria/actinomycosis. Updated: January 1, 2016. Accessed: March 24, 2017.
  3. Nocardiosis. http://www.merckmanuals.com/professional/infectious-diseases/gram-positive-bacilli/nocardiosis. Updated: October 1, 2015. Accessed: March 27, 2017.
  4. Gerald I. Byrne, Ph.D.. Chlamydia trachomatis strains and virulence: rethinking links to infection prevalence and disease severity. The Journal of Infectious Diseases. 2010 .
  5. Miura K, Rikihisa Y. Virulence Potential of Ehrlichia chaffeensis Strains of Distinct Genome Sequences. Infect Immun. 2007; 75 (7): p.3604-3613. doi: 10.1128/iai.02028-06 . | Open in Read by QxMD
  6. Rikihisa Y, Lin M, Niu H, Cheng Z. Type IV Secretion System of Anaplasma phagocytophilum and Ehrlichia chaffeensis. Ann N Y Acad Sci. 2009; 1166 (1): p.106-111. doi: 10.1111/j.1749-6632.2009.04527.x . | Open in Read by QxMD
  7. Rikihisa Y. Mechanisms of Obligatory Intracellular Infection with Anaplasma phagocytophilum. Clin Microbiol Rev. 2011; 24 (3): p.469-489. doi: 10.1128/cmr.00064-10 . | Open in Read by QxMD
  8. Guzman N, Yarrarapu SNS, Beidas SO. Anaplasma Phagocytophilum (Anaplasmosis). StatPearls. 2020 .
  9. Dumler JS, Choi K-S, Garcia-Garcia JC, et al. Human Granulocytic Anaplasmosis and Anaplasma phagocytophilum. Emerg Infect Dis. 2005; 11 (12): p.1828-1834. doi: 10.3201/eid1112.050898 . | Open in Read by QxMD
  10. Willey JM, Sherwood L, Woolverton CJ. Prescott's Principles of Microbiology. McGraw-Hill ; 2008
  11. Frota CC, Lima LN, Rocha Ada S et al. Mycobacterium leprae in six-banded (Euphractus sexcinctus) and nine-banded armadillos (Dasypus novemcinctus) in Northeast Brazil.. Mem Inst Oswaldo Cruz. 2012; 107 (Suppl 1): p.209-13.
  12. Cultivation and Viability Determination of Mycobacterium leprae. https://internationaltextbookofleprosy.org/chapter/assays-determining-viability-mycobacterium-leprae. . Accessed: October 9, 2020.
  13. Kashyap S, Sarkar M. Mycoplasma pneumonia: Clinical features and management. Lung India. 2010; 27 (2): p.75. doi: 10.4103/0970-2113.63611 . | Open in Read by QxMD
  14. Morrill S, Gilbert NM, Lewis AL. Gardnerella vaginalis as a Cause of Bacterial Vaginosis: Appraisal of the Evidence From in vivo Models. Frontiers in Cellular and Infection Microbiology. 2020; 10 . doi: 10.3389/fcimb.2020.00168 . | Open in Read by QxMD
  15. Kairys N, Garg M. Gardnerella. StatPearls. 2020 .
  16. Bennett JE, Dolin R, Blaser MJ. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases E-Book. Elsevier Health Sciences ; 2019
  17. Antony B, Nisha K, Udayalaxmi J. Comparative analysis of virulence factors & biotypes of Gardnerella vaginalis isolated from the genital tract of women with & without bacterial vaginosis. Indian J Med Res. 2019; 149 (1): p.57. doi: 10.4103/ijmr.ijmr_1674_16 . | Open in Read by QxMD
  18. Taylor TA, Unakal CG. Staphylococcus Aureus. StatPearls. 2020 .
  19. Xu SX, McCormick JK. Staphylococcal superantigens in colonization and disease. Frontiers in Cellular and Infection Microbiology. 2012; 2 . doi: 10.3389/fcimb.2012.00052 . | Open in Read by QxMD
  20. Passàli D, Lauriello M, Passàli GC, Passàli FM, Bellussi L. Group A Streptococcus and its antibiotic resistance. Acta Otorhinolaryngol Ital. 2007; 27 (1): p.27-32.
  21. Talay SR, Zock A, Rohde M et al. Co-operative binding of human fibronectin to SfbI protein triggers streptococcal invasion into respiratory epithelial cells. Cellular Microbiology. 2000; 2 (6): p.521-535. doi: 10.1046/j.1462-5822.2000.00076.x . | Open in Read by QxMD
  22. Remmington A, Turner CE. The DNases of pathogenic Lancefield streptococci. Microbiology. 2018; 164 (3): p.242-250. doi: 10.1099/mic.0.000612 . | Open in Read by QxMD
  23. Prevention of group B streptococcal early-onset disease in newborns. ACOG Committee Opinion No. 797..
  24. Hensler ME. Streptococcus gallolyticus, Infective Endocarditis, and Colon Carcinoma: New Light on an Intriguing Coincidence. J Infect Dis. 2011; 203 (8): p.1040-1042. doi: 10.1093/infdis/jiq170 . | Open in Read by QxMD
  25. Rusniok C, Couvé E, Da Cunha V, et al. Genome Sequence of Streptococcus gallolyticus: Insights into Its Adaptation to the Bovine Rumen and Its Ability To Cause Endocarditis. J Bacteriol. 2010; 192 (8): p.2266-2276. doi: 10.1128/jb.01659-09 . | Open in Read by QxMD
  26. K L Ruoff. Streptococcus anginosus ("Streptococcus milleri"): the unrecognized pathogen.. Clin Microbiol Rev. 1988; 1 (1): p.102-108. doi: 10.1128/cmr.1.1.102 . | Open in Read by QxMD
  27. Chuard C, Reller LB. Bile-Esculin Test for Presumptive Identification of Enterococci and Streptococci: Effects of Bile Concentration, Inoculation Technique, and Incubation Time. J. Clin. Microbiol. 1998; 36 (4): p.1135-1136.
  28. Gladwin M, Trattler W. Clinical Microbiology Made Ridiculously Simple (Ed. 6) . Medmaster ; 2016
  29. Heiniger N, Spaniol V, Troller R, Vischer M, Aebi C. A reservoir of Moraxella catarrhalis in human pharyngeal lymphoid tissue. J Infect Dis. 2007; 196 (7): p.1080-1087. doi: 10.1086/521194 . | Open in Read by QxMD
  30. Augustyniak D, Seredyński R, McClean S, et al. Virulence factors of Moraxella catarrhalis outer membrane vesicles are major targets for cross-reactive antibodies and have adapted during evolution. Scientific Reports. 2018; 8 (1). doi: 10.1038/s41598-018-23029-7 . | Open in Read by QxMD
  31. Clostridium perfringens Food Poisoning. http://www.merckmanuals.com/professional/infectious-diseases/anaerobic-bacteria/clostridium-perfringens-food-poisoning. Updated: January 1, 2016. Accessed: March 26, 2017.
  32. Clostridium perfringens. https://www.cdc.gov/foodsafety/diseases/clostridium-perfringens.html#:~:text=perfringens%20food%20poisoning%3F,for%20less%20than%2024%20hours.. . Accessed: October 9, 2020.
  33. Tetanus (Lockjaw). http://www.merckmanuals.com/professional/infectious-diseases/anaerobic-bacteria/tetanus. Updated: January 1, 2016. Accessed: March 26, 2017.
  34. Scuron MD, Boesze-Battaglia K, Dlakić M, Shenker BJ. The Cytolethal Distending Toxin Contributes to Microbial Virulence and Disease Pathogenesis by Acting As a Tri-Perditious Toxin. Frontiers in Cellular and Infection Microbiology. 2016; 6 . doi: 10.3389/fcimb.2016.00168 . | Open in Read by QxMD
  35. GŁOWACKA P, ŻAKOWSKA D, NAYLOR K, NIEMCEWICZ M, BIELAWSKA-DRÓZD A. Brucella – Virulence Factors, Pathogenesis and Treatment. Polish Journal of Microbiology. 2018; 67 (2): p.151-161. doi: 10.21307/pjm-2018-029 . | Open in Read by QxMD
  36. CDC - Brucellosis treatment. https://www.cdc.gov/brucellosis/treatment/index.html#:~:text=Generally%2C%20the%20antibiotics%20doxycycline%20and,allergic%20to%20doxycycline%20or%20rifampin. . Accessed: October 9, 2020.
  37. Alavi SM, Alavi L. Treatment of brucellosis: a systematic review of studies in recent twenty years.. Caspian journal of internal medicine. 2013; 4 (2): p.636-41.
  38. Harper M, Boyce JD, Adler B. Pasteurella multocida pathogenesis: 125 years after Pasteur. FEMS Microbiol Lett. 2006; 265 (1): p.1-10. doi: 10.1111/j.1574-6968.2006.00442.x . | Open in Read by QxMD
  39. Howard A, O’Donoghue M, Feeney A, Sleator RD. Acinetobacter baumannii. Virulence. 2012; 3 (3): p.243-250. doi: 10.4161/viru.19700 . | Open in Read by QxMD
  40. Nie D, Hu Y, Chen Z, et al. Outer membrane protein A (OmpA) as a potential therapeutic target for Acinetobacter baumannii infection. J Biomed Sci. 2020; 27 (1). doi: 10.1186/s12929-020-0617-7 . | Open in Read by QxMD
  41. Morabito S. Pathogenic Escherichia coli. Caister Academic Press ; 2014
  42. P. Kaur, A. Chakraborti, A. Asea. Enteroaggregative Escherichia coli: An Emerging Enteric Food Borne Pathogen. Interdisciplinary Perspectives on Infectious Diseases. 2010 .
  43. Hughes AK, Stricklett PK, Kohan DE. Shiga toxin-1 regulation of cytokine production by human glomerular epithelial cells.. Nephron. 2001 .
  44. Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Frontiers in Microbiology. 2017; 8 . doi: 10.3389/fmicb.2017.01566 . | Open in Read by QxMD
  45. Logue CM, Doetkott C, Mangiamele P, et al. Genotypic and Phenotypic Traits That Distinguish Neonatal Meningitis-Associated Escherichia coli from Fecal E. coli Isolates of Healthy Human Hosts. Appl Environ Microbiol. 2012; 78 (16): p.5824-5830. doi: 10.1128/aem.07869-11 . | Open in Read by QxMD
  46. Plague - Ecology and Transmission. https://www.cdc.gov/plague/transmission/. Updated: September 14, 2015. Accessed: March 25, 2017.
  47. Yersinia enterocolitica (Yersiniosis) - Information for Health & Lab Professionals. https://www.cdc.gov/yersinia/healthcare.html. Updated: May 25, 2016. Accessed: March 25, 2017.
  48. Jonathan Cohen, William G Powderly, Steven M. Opal. Infectious Diseases. Elsevier ; 2016
  49. Shigellosis (Bacillary Dysentery). http://www.merckmanuals.com/professional/infectious-diseases/gram-negative-bacilli/shigellosis. Updated: May 1, 2016. Accessed: March 29, 2017.
  50. Sjölund Karlsson M, Bowen A, Reporter R, et al. Outbreak of Infections Caused by Shigella sonnei with Reduced Susceptibility to Azithromycin in the United States. Antimicrobial Agents Chemother (Bethesda). 2012; 57 (3): p.1559-1560. doi: 10.1128/aac.02360-12 . | Open in Read by QxMD
  51. Wangdi T, Lee CY, Spees AM, Yu C, Kingsbury DD, Winter SE, Hastey CJ, Wilson RP, Heinrich V, Bäumler AJ. The Vi capsular polysaccharide enables Salmonella enterica serovar typhi to evade microbe-guided neutrophil chemotaxis.. PLOS Pathogens. 2014 .
  52. Kamal F, Williams G, Akbar H, Khan MA, Kadaria D. Klebsiella Pneumoniae Liver Abscess: a Case Report and Review of Literature. Cureus. 2017 . doi: 10.7759/cureus.970 . | Open in Read by QxMD
  53. Lagergård T, Bölin I, Lindholm L. On the evolution of the sexually transmitted bacteria Haemophilus ducreyi and Klebsiella granulomatis.. Ann N Y Acad Sci. 2011; 1230 : p.1-10. doi: 10.1111/j.1749-6632.2011.06193.x. . | Open in Read by QxMD
  54. Brown LM. Helicobacter pylori: epidemiology and routes of transmission.. Epidemiol Rev. 2000; 22 (2): p.283-297.
  55. Newton HJ, Ang DKY, van Driel IR, Hartland EL. Molecular Pathogenesis of Infections Caused by Legionella pneumophila. Clin Microbiol Rev. 2010; 23 (2): p.274-298. doi: 10.1128/cmr.00052-09 . | Open in Read by QxMD
  56. Dasti JI, Tareen AM, Lugert R, Zautner AE, Groß U. Campylobacter jejuni: A brief overview on pathogenicity-associated factors and disease-mediating mechanisms. International Journal of Medical Microbiology. 2010; 300 (4): p.205-211. doi: 10.1016/j.ijmm.2009.07.002 . | Open in Read by QxMD
  57. Peek ME, Bhatnagar A, McCarty NA, Zughaier SM. Pyoverdine, the major siderophore in Pseudomonas aeruginosa, evades NGAL recognition. Interdiscip Perspect Infect Dis. 2012; 2012 : p.1-10. doi: 10.1155/2012/843509 . | Open in Read by QxMD
  58. Schalk IJ, Guillon L. Pyoverdine biosynthesis and secretion inPseudomonas aeruginosa: implications for metal homeostasis. Environ Microbiol. 2012; 15 (6): p.1661-1673. doi: 10.1111/1462-2920.12013 . | Open in Read by QxMD
  59. Karaman E, Yilmaz M, Ibrahimov M, Haciyev Y, Enver O. Malignant otitis externa. J Craniofac Surg. 2012; 23 (6): p.1748-1751. doi: 10.1097/scs.0b013e31825e4d9a . | Open in Read by QxMD
  60. Mahenthiralingam E, Vandamme P. Taxonomy and pathogenesis of the Burkholderia cepacia complex. Chron Respir Dis. 2005; 2 (4): p.209-217. doi: 10.1191/1479972305cd053ra . | Open in Read by QxMD
  61. Cholera Fact sheet. http://www.who.int/mediacentre/factsheets/fs107/en/. Updated: October 1, 2016. Accessed: March 24, 2017.
  62. Haftel A, Sharman T. Vibrio Vulnificus. StatPearls. 2020 .
  63. Rezny BR, Evans DS. Vibrio Parahaemolyticus. StatPearls. 2020 .
  64. Dupin C, Tamanai-Shacoori Z, Ehrmann E et al. . Oral Gram-negative anaerobic bacilli as a reservoir of β-lactam resistance genes facilitating infections with multiresistant bacteria.. Int J Antimicrob Agents. 2015; 45 (2): p.99-105. doi: 10.1016/j.ijantimicag.2014.10.003 . | Open in Read by QxMD
  65. Hong P-Y, Wu J-H, Liu W-T. Relative Abundance of Bacteroides spp. in Stools and Wastewaters as Determined by Hierarchical Oligonucleotide Primer Extension. Appl Environ Microbiol. 2008; 74 (9): p.2882-2893. doi: 10.1128/aem.02568-07 . | Open in Read by QxMD
  66. Bartonella Infection (Cat Scratch Disease, Trench Fever, and Carrión's Disease) - Transmission. https://www.cdc.gov/bartonella/transmission/. Updated: December 14, 2015. Accessed: March 29, 2017.
  67. Foucault C, Brouqui P, Raoult D. Bartonella quintana Characteristics and Clinical Management. Emerg Infect Dis. 2006; 12 (2). doi: 10.3201/eid1202.050874 . | Open in Read by QxMD
  68. Harms A, Dehio C. Intruders below the Radar: Molecular Pathogenesis of Bartonella spp.. Clin Microbiol Rev. 2012; 25 (1): p.42-78. doi: 10.1128/cmr.05009-11 . | Open in Read by QxMD
  69. C.K. Casey Chen, Mark E. Wilson. Eikenella corrodens in Human Oral and Non-Oral Infections: A Review. J Periodontol. 1992; 63 (12): p.941-953. doi: 10.1902/jop.1992.63.12.941 . | Open in Read by QxMD
  70. Udaka T, Hiraki N, Shiomori T, et al. Eikenella corrodens in head and neck infections.. J Infect. 2007; 54 (4): p.343-8. doi: 10.1016/j.jinf.2005.06.015 . | Open in Read by QxMD
  71. Zinner SH, Daly AK, McCormack WM. Isolation of Eikenella corrodens in a General Hospital. Appl Microbiol. 1973; 25 (5): p.705-708. doi: 10.1128/aem.25.5.705-708.1973 . | Open in Read by QxMD
  72. Le T, Bhushan V,‎ Sochat M, Chavda Y, Zureick A. First Aid for the USMLE Step 1 2018. McGraw-Hill Medical ; 2017
  73. Tufariello JM, Lowy FD. Infection due to Coagulase-Negative Staphylococci: Epidemiology, Microbiology, and Pathogenesis. In: Post TW, ed. UpToDate. Waltham, MA: UpToDate. https://www.uptodate.com/contents/infection-due-to-coagulase-negative-staphylococci-epidemiology-microbiology-and-pathogenesis.Last updated: August 28, 2018. Accessed: November 16, 2018.
  74. Edwards MS, Baker CJ. Bacterial Meningitis in the Neonate: Treatment and Outcome. In: Post TW, ed. UpToDate. Waltham, MA: UpToDate. https://www.uptodate.com/contents/bacterial-meningitis-in-the-neonate-treatment-and-outcome.Last updated: October 16, 2018. Accessed: November 16, 2018.
  75. Streptococcus pyogenes and Streptococcal Disease. http://textbookofbacteriology.net/streptococcus_2.html. . Accessed: March 12, 2019.
  76. George H. Warren, Jane Gray. THE DEPOLYMERIZATION OF BACTERIAL POLYSACCHARIDES BY HYALURONIDASE PREPARATIONS. Journal of Bacteriology. 1953 .
  77. Lewis LS. How common is S aureus colonization and where does it occur? - Medscape. In: Steele RW, How common is S aureus colonization and where does it occur? - Medscape. New York, NY: WebMD. https://www.medscape.com/answers/965254-27506/how-common-is-s-aureus-colonization-and-where-does-it-occur. Updated: September 24, 2019. Accessed: April 29, 2020.
  78. Schlegel L, Grimont F, Ageron E, Grimont PAD, Bouvet A. Reappraisal of the taxonomy of the Streptococcus bovis/Streptococcus equinus complex and related species: description of Streptococcus gallolyticus subsp. gallolyticus subsp. nov., S. gallolyticus subsp. macedonicus subsp. nov. and S. gallolyticus subsp. pasteurianus subsp. nov.. Int J Syst Evol Microbiol. 2003; 53 (3): p.631-645. doi: 10.1099/ijs.0.02361-0 . | Open in Read by QxMD
  79. Klein RS, Recco RA, Catalano MT, Edberg SC, Casey JI, Steigbigel NH. Association ofStreptococcus boviswith Carcinoma of the Colon. N Engl J Med. 1977; 297 (15): p.800-802. doi: 10.1056/nejm197710132971503 . | Open in Read by QxMD
  80. Dekker JP, Lau AF. An Update on the Streptococcus bovis Group: Classification, Identification, and Disease Associations. J Clin Microbiol. 2016; 54 (7): p.1694-1699. doi: 10.1128/jcm.02977-15 . | Open in Read by QxMD